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ABSTRACT

Neodysidenin was isolated from the marine sponge Dysidea herbacea (Keller 1889) collected on the Great Barrier Reef. The complete configuration
was obtained from a combination of methods, including capillary electrophoresis of Marfey’s derivatives. Neodysidenin belongs to the L-series
of trichloroleucine peptides, and the configuration of the N-methyl thiazolyl alanine residue (13R) is opposite to that of dysidenin.

Dysidenin (1), first discovered by Kazlauskaset al.,1 is a
member of a family of chloroleucine peptides produced by
a symbiotic assemblage: the marine spongeDysidea her-
bacea(Keller 1889) and the cyanobacteriumOscillatoria
spongeliae.2 Dysidenin is a potent inhibitor of the iodide-
sodium co-transporter in bovine thyroid.3 The ichthyotoxic
5-epimer of1, isodysidenin (2), was isolated from a sample
of D. herbaceafrom New Guinea.4 Many other examples
of trichloromethyl derivatives such as diketopiperazine

dimers,5 pyrrolidinones,6 and simpleN-acyl trichloroleucines
have been found inD. herbacea.7 It is known that the peptide
composition and content ofD. herbaceais highly variable
with geographic location.

The remarkable amino acidN-methyl 5,5,5-trichloroleu-
cine (3a) is the most common structural motif inDysidea
peptides. It appears that introduction of Cl in1 may involve
chlorination of leucine, or anN-acyl derivative thereof. The
4,4,4-trichloroisovaleric acid side chain may be a product
of catabolism of3a or 3b.8 We now report the complete
structure of (-)-neodysidenin (4), a constitutional isomer of
1 containing a non-N-methylated trichloroleucine residue.
This discovery has implications for the order of reactions
involved in the biosynthesis of1 and3 and, ultimately, the
origin of 3a and3b.
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(-)-Neodysidenin (4) was isolated as a minor constituent
of the Indo-Pacific spongeD. herbacea,9 along with the
major components1, diketopiperazine (-)-5,10 and dysidin.6

HRFABMS data ([M+ H]+, m/z543.9706,∆mmu 1.4)
provided the formula C17H23Cl6N3O2S for4 which is isomeric
with that of1 and2. The1H (Table 1) and13C NMR data of

4 revealed the presence of two mutually coupled protons
belonging to a 2-substituted thiazole (δ 7.34, d,J ) 3.3 Hz,
H-17; 7.74, d,J ) 3.3 Hz, H-16), but significant differences
in 1H and13C chemical shifts clearly pointed to a compound
distinct from1 or 2. In particular, theN-Me signal (δ 2.94,
s) appeared significantly upfield from that of1 (δ 3.26, s).

1H-1H COSY, long-range COSY, and NOESY (tm ) 600
mS) experiments (CDCl3)11 revealed that the NH signal was
contiguously coupled to signals of the trichloroleucine

residue. Conversely, the thiazole-modified alanine signal
H-13 appeared as a clean quartet (δ 6.17, q, 1H,J ) 7.1
Hz) which required placement of theN-Me group at the
R-nitrogen of the thiazolyl alanine residue. Thus,4 is related
to 1 and 2 by transposition of theN-Me group to the
thiazolyl-alanine NH and constitutes a rare example of a non-
N-methylated trichloroleucine peptide.

Independent investigations6,12 showed that the configura-
tion at each trichloroisopropyl group in1 and related
compounds is invariablyS; however, C-5 can belong to either
theSor Rseries as is shown in1 and2, respectively. Optical
rotation measurements of dysidenin analogues show that the
sign of [R]D is usually correlated with C-5 stereochemistry.12b

Both 1 and 4 are levorotatory ([R]D -98°1 and -52.1°,
respectively, in CHCl3), but the CD spectra of the two
compound showed Cotton effects of opposite sign at the
n-π* transition maximum for amide bonds [1,λ 227 (∆ε

-5.4); 4, 227 (+1.4)].
In addition,4 exhibited a more negative Cotton effect at

the thiazole chromophore [λ 245 (∆ε -4.5)] which may
reflect different configurations at C-5 or C-13 or simply the
consequence of different rotamer populations arising from
N-methylation at a different amide group.

To resolve the ambiguity of the chiroptical data, we turned
to degradative methods to assign the configuration of4
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Table 1. 1H NMR Data for (-)-Neodysidenin (4)a

# δ (CDCl3, 300 MHz) δ (1:1 C6D6/CDCl3, 300 MHz)

1 1.37 (d, 3H, J ) 6.7 Hz) 1.27 (d, 3H, J ) 6.4 Hz)
2 3.22 (m, 1H, J ) 10.2, 6.7,

3.2 Hz)
3.23 (m, J ) 9.6, 6.7,

2.7 Hz, 1H)
3a 2.32 (m, 1H) 2.02 (dd, 1H, J ) 14.9, 9.6 Hz)
3b 3.09 (dd, 1H, J ) 15.3, 2.4) 2.89 (dd, 1H, 14.9, 2.7 Hz)
5 5.06 (ddd, 1H, J ) 11.1, 8.4,

2.4 Hz)
5.04 (m, 1H, J ) 9.8, 2.4 Hz)

6a 1.67b 1.68 (m, 1H, J ) 10.1, 7.7 Hz)
6b 2.38 (m, 1H) 2.37 (m, 1H)
7 2.60 (m, 1H) 2.6b

8 1.48 (d, 3H, J ) 6.7 Hz) 1.44 (d, 3H, J ) 6.7 Hz)
13 6.17 (q, 1H, J ) 7.1 Hz) 6.13 (q, 1H, J ) 7.0 Hz)
14 1.67 (d, 3H, J ) 7.1 Hz) 1.48 (d, 3H, J ) 7.1 Hz)
16 7.74 (d, 1H, J ) 3.3 Hz) 7.54 (d, 1H, J ) 3.0 Hz)
17 7.34 (d, 1H, J ) 3.3 Hz) 6.88 (d, 1H, J ) 3.3 Hz)
N-Me 2.94 (s, 3H) 2.64 (s, 3H)
NH 6.70 (bd, 1H, J ) 8.4 Hz)

a The 1H NMR spectrum of4 shows a 7:1 ratio of rotamers about the
N-methylamide bond. Assignments are those of the major rotamer only.
Numbering scheme follows that of ref 1. All assignments were made from
COSY and decoupling experiments.b Obscured by overlap.
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(Scheme 1). Determination of stereochemistry of4 was made
difficult by the limited amount of sample available (∼1 mg)
which necessitated careful handling and deployment of
several sensitive techniques. A sample of4 (ca. 0.4 mg) was
subjected to hydrolysis (6 M HCl, 110°C, 16 h).13 The water-
soluble fraction was concentrated and subjected to reductive
dechlorination (Zn-AcOH, 60°C), followed by precipitation
of Zn salts (H2S, aq) to obtain a solution containing leucine
that was shown to be 2Sby Marfey’s method.14 Thus,4 has
the (5S) configuration and is correlated with dysidenin (1)
instead of isodysidenin (2).

The configuration at C-13 was determined as follows. A
second sample of4 was first ozonolyzed (O3, MeOH, -78
°C, 15 min), followed by treatment with performic acid
(HCOOH, H2O2, 50 °C), hydrolysis (6 M HCl, 100°C, 10
h),15 and partitioning with EtOAc. Derivatization of the
aqueous fraction with Marfey’s reagent and analysis of the
mixture by micellar electrokinetic capillary chromatography
(MECC)16 revealed the presence of (R)-N-methylalanine.

This is the first report of a peptide with a (13R) configuration
in the “dysidenin family”.

Treatment of the EtOAc-soluble fraction from the hy-
drolysis with diazomethane followed by chiral GCMS
analysis (R-permethylated cyclodextrin capillary column)
gave predominantly (S)-methyl 4,4,4-trichloromethyl-3-meth-
ylbutanoate [(3S)-6] with a retention time of 11.8 min.17

Authentic (3S)-618 and (3R)-6gave retention times of 11.8
and 12.1 min, respectively. Thus, the C-2 configuration of
4 is S and it is highly likely the C-7 configuration is the
same on the basis of literature precedents.6,12 The complete
configuration of4 is, therefore, (2S,5S,7S,13R).

Non-N-methylated trichloroleucine, as found in4, is rare;
almost all acylated trichloroleucine peptides reported to date
areN-methylated. It has been proposed that chlorination of
leucine occurs prior toN-methylation andN-acylation as the
simplest trichloroleucine derivative (herbacic acid,7)7a is
N-methylated and several diketopiperzines of2 have one or
both nitrogens methylated. This finding for4 clearly shows
thatN-methylation is not an obligatory event prior to peptide
chain extension in derivatives of3, which leads to the
expectation that the enzymes responsible for production of
1, 2, and4 may not be tightly coupled to theN-methylase
activity. Consequently, it is possible that simpleN-acylated
analogues of leucine may serve as surrogate substrates for
the putative “halogenase”8b that carries out the remarkable
stereospecific substitution of three hydrogens for three
chlorines at the unactivated pro-4Smethyl group in the side
chain of leucine.
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(17) GCMS of the sample revealed partial racemization of6 under
hydrolysis conditions (6 M HCl, 100°C, 10 h,∼12:1 ratio ofS:R). We
surmise that the mechanism of epimerization at C-3 of6 is reversible thermal
elimination of HCl from the trichloroisopropyl group. During a second
hydrolysis of4, under more harsh conditions (12 h, 110°C), the racemization
of 6 appeared to be complete.
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